Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Julia Heilmann, Hans-Wolfram Lerner and Michael Bolte*

Institut für Anorganische Chemie, J. W. GoetheUniversität Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt/Main, Germany

Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.017 \AA$
H -atom completeness 73%
Disorder in solvent or counterion
R factor $=0.101$
$w R$ factor $=0.283$
Data-to-parameter ratio $=14.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tris(2,2'-bipyridyl)iron(II) dibromide 4.5-hydrate

The title compound, $\left[\mathrm{Fe}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3}\right] \mathrm{Br}_{2} \cdot 4.5 \mathrm{H}_{2} \mathrm{O}$, contains discrete tris($2,2^{\prime}$-bipyridyl)iron(II) cations, bromide anions and water molecules. The Fe atom (site symmetry 3) is octahedrally coordinated by six N atoms of the three bidentate bipyridyl ligands. One bromide ion occupies a site of symmetry m; the other one is located on a site of symmetry 32. All the water O atoms are also located on special positions of site symmetries $3, m(\times 2)$ and $\overline{6}$.

Comment

Recently, we have synthesized the anionic [1,1]diborataferrocenophane (I), which represents a highly efficient Li^{+} scavenger (Scheibitz et al., 2003). Now we are attempting to prepare the cationic [1,1]diborataferrocenophane, (III). In attempting to synthesize (III) $\cdot \mathrm{Br}_{2}$ from (II) and $2,2^{\prime}$-bipyridine, we have obtained the title compound, (IV), as a sideproduct.

Received 30 May 2006
Accepted 1 June 2006

(I)
$\mathrm{Li}\left(12\right.$-crown-4) ${ }_{2}$

(II)
(III)

Figure 1
Perspective view of (I), showing 50\% probability displacement ellipsoids (H atoms omitted for clarity). [Symmetry codes: (A) $1-y, 1+x-y, z$, (B) $-x+y, 1-x, z$.]

Compound (IV) crystallizes in the uncommon highsymmetry space group $P \overline{6} 2 c$ and contains discrete tris $\left(2,2^{\prime}-\right.$ bipyridyl)iron(II) cations accompanied by charge-balancing bromide anions and uncoordinated water molecules. The Fe atom is located on a crystallographic threefold axis parallel to c, with just one-third of a complex molecule in the asymmetric unit. The Fe atom is octahedrally coordinated by six N atoms of the bipyridyl ligands. The bipyridyl group is slightly bent; the dihedral angle between the two aromatic rings is $5.4(6)^{\circ}$. The two unique bromide ions have site symmetries m (Br 1) and 32 (Br 2). The water O atoms also lie on special positions with the following site symmetries: $\mathrm{O} 13, \mathrm{O} 2 m, \mathrm{O} 3 \overline{6}, \mathrm{O} 4$ and $\mathrm{O}^{\prime} m$ (the latter atom is disordered over two sites). The water molecule H atoms could not be found but $\mathrm{O} \cdots \mathrm{Br}$ distances in the range $3.0-3.2 \AA$ suggest that $\mathrm{O}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds may be present.

A search in the Cambridge Structural Database (Version 5.27 including two updates, May 2006; Allen, 2002) yielded 25 entries containing the $\left[\mathrm{Fe}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3}\right]^{2+}$ fragment, with a mean $\mathrm{Fe}-\mathrm{N}$ bond length of 1.976 (12) \AA, a value that agrees well with that found for (IV) (Table 1).

Experimental

In an attempt to synthesize complex (III) $\cdot \mathrm{Br}_{2}$ from the reaction of (II) $(0.066 \mathrm{~g}, 0.120 \mathrm{mmol})$ with $2,2^{\prime}$-bipyridine $(0.047 \mathrm{~g}, 0.301 \mathrm{mmol})$ in acetonitrile $(30 \mathrm{ml})$, we obtained $\left[\mathrm{Fe}\left(2,2^{\prime}-\mathrm{bipy}\right)_{3}\right] \mathrm{Br}_{2}$ as a sideproduct. X-ray quality crystals of (IV) were grown from $\mathrm{CD}_{3} \mathrm{CN}$ in an NMR tube at ambient temperature over a period of several months.

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3}\right] \mathrm{Br}_{2} \cdot 4.5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=765.29$
Hexagonal, $P \overline{6} 2 c$
$a=13.1386$ (12) A
$c=21.630$ (3) A
$V=3233.6(6) \AA^{3}$
$Z=4$
$D_{x}=1.572 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=2.98 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Plate, red
$0.26 \times 0.24 \times 0.08 \mathrm{~mm}$

Data collection

Stoe IPDSII two-circle diffractometer
ω scans
Absorption correction: multi-scan
(MULABS; Spek, 2003; Blessing, 1995)
$T_{\text {min }}=0.511, T_{\text {max }}=0.796$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.101$
$w R\left(F^{2}\right)=0.283$
$S=1.15$
2071 reflections
139 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.188 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.033$ 。
$\Delta \rho_{\text {max }}=2.19 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-1.17 \mathrm{e}^{-3}$
Absolute structure: Flack (1983),
892 Friedel pairs
Flack parameter: 0.56 (5)

Table 1
Selected bond lengths (\AA).

Fe1-N1	$1.973(9)$	Fe1-N11	1.989 (10)

H atoms were placed in idealized locations ($\mathrm{C}-\mathrm{H}=0.95 \AA$) and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$; the water H atoms could not be found. One water molecule (O4), which is located on a crystallographic mirror plane, is disordered over two sites in a 0.61 (5):0.39 (5) ratio (occupancy sum constrained to unity). The crystal used for data collection was an inversion twin: the volume fractions of the twin components refined to 0.56 (5):0.44 (5). The highest peak is located $0.24 \AA$ from Fe 1 and the deepest hole is located 0.71 Å from Br1.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. \& Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Scheibitz, M., Winter, R. F., Bolte, M., Lerner, H.-W. \& Wagner, M. (2003). Angew. Chem. Int. Ed. 42, 924-927.
Sheldrick, G. M. (1991). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. A36, 7-13.
Stoe \& Cie (2001). X-AREA. Stoe \& Cie, Darmstadt, Germany.

